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In all equations for ai(r), the set of coordinates is 
chosen as in International Tables for X-ray Crystal- 
lography (1952); if the tables give two alternative 
origins (of coordinates) then the first one is adopted. 
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Abstract 

A method for choosing OD layers in a structure is 
given. For any structure one of four cases is possible: 
I. the structure cannot be interpreted as an OD struc- 
ture consisting of layers; 2. the OD layers are uniquely 
determined; 3. the limits between OD layers may be 
changed with keeping the OD groupoid family; and 
4. the limits may be changed with changing the OD 
groupoid family. 

Introduction 

Since OD theory has been developed it has proved 
its worth for the investigation of disordered structures 
and for the explanation of relations between poly- 
types (for some references see, for example, Table 1 
in Dornberger-Schiff, 1979). 

OD theory is based on the principle that interatomic 
forces decrease with increasing distance. A local 
arrangement of atoms occurring equivalently again 
and again in a structure does not necessarily enforce 
a three-dimensional periodicity of the total arrange- 
ment of all atoms in the structure. Because of the 
possible absence of three-dimensional periodicity, the 
symmetry relations within structures with (possible) 
disorder cannot be adequately described in the usual 
way by total symmetry operations which form space 

0108-7673/84/020095-05501.50 

groups. The geometrical means used instead by Dorn- 
berger-Schiff are partial coincidence operations 
which in their turn form groupoids (Brandt, 1926; 
Ehresmann, 1957). The partial coincidence operations 
refer to parts of the structure occurring equivalently 
again and again in the structure. These parts may be 
aperiodic blocks, one-dimensionally periodic rods, or 
two-dimensionally periodic layers. In the case of 
polytypes which differ in layer stacking sequence 
(Bailey et al., 1977) these parts are two-dimensionally 
periodic layers. OD theory is a geometrical approach 
and therefore these layers, called OD layers, are not 
identical with crystallochemical layers, although they 
often refer to the same region of the structure. OD 
layers reflect predominantly symmetry properties of 
two-dimensionally periodic parts. With the know- 
ledge about the OD layers and about the pairs of 
adjacent OD layers all possible polytypes of a sub- 
stance may be deduced, especially the MDO struc- 
tures, called simple or regular by other authors, disor- 
dered and periodic polytypes of any length may be 
deduced as well. All these theoretically possible struc- 
tures consisting of the same kinds of OD layers and 
the same kinds of layer pairs are said to belong to a 
family of OD structures (Dornberger-Schiff, 1964; 
Dornberger-Schitt & I3urovi~, 1975). Until now there 
have been no exact methods for choosing OD layers 
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96 HOW TO CHOOSE OD LAYERS 

and it seemed there is only a method of trial and 
error to find them. Dornberger-Schiff (1980) sketched 
for the first time how to proceed in choosing OD 
layers. The present paper is based on these ideas. 

Preliminary premise: the vicinity condition 

OD structures are defined by the 'vicinity condition'. 
It relates parts of the structure fairly near to each 
other and it singles out from all possible types of 
structures those which show a certain kind of order. 
The vicinity condition is cited as formulated by Dorn- 
berger-Schiff (1980). In this form it defines OD struc- 
tures consisting of layers and holds for all polytypic 
structures known to us. 

The vicinity condition (VC) is said to hold for a 
structure (a set of structures) if and only if 

(a)  it (they) may be considered as consisting of 
disjunct parts periodic in two dimensions (layers) 
which are either of the same or of a small number of 
kinds; 

(/3) all layers of a crystal have a translational group 
ma + nb in common (a, b non-collinear); 

(y) equivalent sides of equivalent layers are in any 
and all considered structures faced by adjacent layers 
in such a way that the layer pairs thus formed are 
equivalent. 

For our further considerations we presuppose the 
knowledge of the structure of at least two different 
polytypes belonging to one family of polytypic struc- 
tures or the structure of a sample showing one- 
dimensional disorder is known. An example will serve 
to demonstrate how to proceed in principle. 
Equivalent regions play a fundamental role for deter- 
mining OD layers. In the paragraph following, 
equivalent regions will be defined exactly. Then all 
cases occurring for equivalent regions and the con- 
sequences for the choice of OD layers are given and 
demonstrated by examples. 

An example representing the procedure in a simple case 
Example 1: tantalum pentaiodide (Tals)2 

In (TaIs)2 sheets of edge-sharing dimers are stacked 
as indicated in Fig. 1 (Miiller, 1979). This structure 
shows one-dimensional disorder, which means that a 
splitting of the structure perpendicular to the direc- 
tion of missing periodicity results in two-dimension- 
ally periodic parts, all with common periodicity vec- 
tors, i.e. VC/3 is fulfilled. For specifying such parts 
so that they fulfil also VCa and VC% maximal 
equivalent regions will be determined occurring again 
and again in the structure. All pairs of adjacent sheets 
of edge-sharing dimers are such maximal equivalent 
regions as required. These regions cover the structure 
in such a way that any sufficiently small part of the 
structure is contained in two such regions. All parts 
of the structure which are the intersection of any two 

overlapping equivalent regions fulfil VCa and VC),. 
That means they are OD layers and (TaIs)2 is an OD 
structure. 

There are two possible positions for any OD layer 
so that it forms with the preceding one a layer pair 
as required by VC3,. These possible positions differ 
by a/2. Any stacking of these OD layers which results 
in layer pairs, any of them equivalent to the preceding 
one, leads to a structure with equivalent atomic 
arrangements within the layer pairs but not 
necessarily to a three-dimensionally periodic 
structure. 

Equivalent regions 

The procedure for choosing OD layers starts always 
in the same way. The maximal equivalent regions are 
to be determined. The notion 'equivalent region' is 
more precisely defined as follows: 

Conditions for equivalent regions (ER) 

C1. Equivalent regions are two-dimensionally 
periodic parts of the structure (two-dimensionally 
periodic in the same directions as the whole structure) 
occurring again and again equivalently (congruently 
or enantiomorphously) in the structure or in the struc- 
tures to be compared. 

C2. They are to be chosen in such a way that, 
wherever a part of an equivalent region occurs 
equivalently in the structure or in the structures to be 
compared, it must lie in a part equivalent to the 
complete equivalent region. (This equivalence of parts 
is to be regarded with respect to the immediate vicinity 
of these parts. Two atomic planes, for example, are 
not regarded as equivalent although the atoms are of 

mo~omol ERs Structure prmcl:~e OD layers 

~ 0 0 ! • • TO 

- - % - % - a ,  4 : z=  0 

Fig. I. Structure principle of (Tals) 2 projected along z. Maximal 
equivalent regions (ER) and OD layers are indicated to the left 
and right, respectively. 
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the same kind and arranged in the same way, if the 
adjacent atomic planes of the one plane are different 
from the adjacent atomic planes of the other.) 

C3. To any equivalent region there exist at least 
two different parts of the structure different from the 
equivalent region and equivalent to it. 

In the following, parts of the structure fulfilling 
these conditions are called ERs for short. An ER is 
called maximal if it is not possible to enlarge it without 
violating these conditions. If there are maximal ERs, 
then any limit of the ERs means that the immediately 
following part of the structure does not have a 
uniquely determined position. If the limit lies within 
another ER, called ER', then the position of the 
following part has only a limited number of  
possibilities for it must fit into ER'. 

Covering a structure by ERs may occur in four 
variants: 

V0. There are parts of  the structure covered by no 
maximal ER, or there are limits of maximal ERs 
which are not contained within another ER. In this 
case the structure cannot be interpreted as an OD 
structure. 

V1. Any sufficiently small part of the structure is 
contained in exactly two maximal ERs (compare with 
example 1). In this case, any intersection of two 
overlapping ERs is an OD layer and the ERs are the 
pairs of adjacent OD layers. 

V2. There are parts covered by only one maximal 
ER (Fig. 2). 

V3. There are parts covered by more than two 
maximal ERs (example 3). 

V2 is shown schematically in Fig. 2. Obviously, 
any two-dimensionally periodic part of an ER is also 
an ER. If ER2 is replaced by ER~ and ER~ in keeping 
with C l, C2 and C3, then part S is also covered by 
two ERs. This has to be done for all ERs equivalent 
to ER2. Take note that the part covered only once 
belongs to one OD layer, although it may happen 
that adjacent atomic layers or atomic half-layers may 
be attached to it as we shall see in the next example. 
As such a part always belongs as a whole to an OD 
layer it is called the 'kernel '  of  an OD layer. 

E~ 

(a) (b) 
Fig. 2. (a) Region S contained in ER 2 only. (b) ER 2 is replaced 

by ER~ and ER2'. 

An example with parts covered only once by maximal 
ERs 

Example 2: dioctahedral mica 

In Fig. 3 the structure of  a dioctahedral mica with 
equivalent 2:1 layers is shown with idealized sym- 
metry according to the original Pauling (1930) model. 
The polytypes of this substance occur in a variety of  
ordered as well as disordered polytypes. On the basis 
of the OD interpretation of this substance all possible 
MDO polytypes (of mica and chlorites) have been 
deduced (Dornberger-Schiff, Backhaus & Durovi~, 
1982; Backhaus, Durovi~ & Weiss, 1984). As shown 
in Fig. 3, the planes of octahedrally coordinated 
cations are always covered once by maximal ERs. If 
the maximal ERs are replaced by modified ERs, then 
the octahedrally coordinated cations are covered 
twice by these ERs. This corresponds to V1 and OD 
layers and layer pairs are determined as in the first 
example. Two kinds of OD layers result as indicated 
under the heading A i. But another replacement of the 
maximal ERs is also possible, and it is shown under 
the heading 'modified ER". New kinds of  OD layers 
A 'j result then. Although attaching the atoms to the 
respective OD layers is different for the ERs and the 
ER's, the layer groups of the resulting OD layers are 
the same and so are the OD groupoid families. The 
limits between the OD layers may vary within the 
indicated regions, i.e. the parts of  the structure in 
which the regions of partial symmetry overlap (indi- 
cated to the left of Fig. 3). In any case of modifying 
the ERs, the conditions for ERs must be fulfilled. 

Regions of 
Maximal Modified OD variable OD Modified 

Structure principle ER ER layers A' limits layers A" ER' 

c,,,,, - - - I t  . . . . .  .,:.i; -_ _ - _ - J ! : .  - ~  : 

. . . . .  t 
Fig. 3. Three arbitrarily stacked mica layers. Small open circles 

denote octahedrally coordinated cations, full circles Si atoms, 
medium-sized open circles O atoms, double circles OH groups 
and large circles interlayer cations. ER and ER' are modifications 
of maximal ERs, where ER leads to the smallest OD layer A I 
and ER' to the largest OD layer A". ER's are obtained from the 
maximal ERs by reducing twice the maximal ERs, indicated by 
the complete brackets (first step) and finally by the heavy part 
of the brackets (second step). 
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V3 seems rarely to occur. If a part of a structure 
is covered more than twice by maximal ERs, it may 
be regarded as an OD layer. But it is also possible 
that it does not occur as an OD layer at all, as we 
shall see in the next example. Consequently, the OD 
groupoid family is in such cases not uniquely deter- 
mined. But there is only a limited number of OD 
groupoid families compatible with the symmetry rela- 
tions of the structure to be investigated. Additional 
criteria (crystallochemical) may lead to an 
unequivocal decision for one of the OD groupoid 
families in question. 

An example with parts covered more than twice by 
maximal ERs 

Example 3: strontium germanate 

As already shown by Dornberger-Schitt (1980), 
S r 3 ( G e O 3 ) 3  is an example for V3. The structure con- 
sists of Sr atoms alternating with sheets of three- 
membered germanate rings (Fig. 4). If the sequence 
of the sheets of the three-membered germanate rings 

Structure ormc=ple 

1 CI2/m(I) 

E 

Max=nnal ER Moddied ERs Max=real ER' 
ER'ER~ER3ER4 OD laver A' 

.; _ 

"t - -~  - - i  K Dr 'iae; e°fs ] - -  

I . . . . . . . .  ] . . . . .  • 

o . . . . . . . .  ~ - [- 
b 

o o o o 

a o 0 

o 02  

Ge not shown 

//~GeO3h 

Fig. 4. At the bottom Sr3(GeO3)3 projected along Co. Two (GeO3)3 
rings of  one sheet are shown with schematic representation given 
by an equilateral triangle with number 1. Further numbered 
triangles indicate a possible sequence of ring sheets in the co 
direction. Above it, this sequence projected along a is shown 
with partial layer symmetry indicated to the left. To the right, 
maximal ER's and corresponding OD layers A' (i = I . . . . .  4) 
are shown. From maximal ER's, OD layers A' may be deduced. 
The limits of OD layers may vary within the indicated region, 
whereas any region equivalent to that indicated by the kernel 
of OD layers is part of one OD layer. 

is as indicated in Fig. 4 (at the bottom), i.e. all triples 
of consecutive sheets are equivalent, then any of the 
maximal ERs contains three consecutive sheets 
including the Sr atoms attached to either side of these 
sheets. Any Sr plane is thus contained in four ERs 
and any sheet of germanate rings is contained in three 
ERs. The reduction of this case to V1 is done by 
shortening any ER in an equivalent way. Four differ- 
ent possibilities are shown, indicated by ER ~, ER 2, 
ER 3, ER a, respectively. ER I and ER 2 originate from 
shortening any maximal ER to the beginning of the 
next but one maximal ER. This may be done in two 
directions resulting in ERIs with OD layers A ~ or 
ER2s with OD layers A 2. The aim is to describe the 
partial symmetry of the structure as well as possible. 
Any one of the two layer groups indicating the partial 
symmetry of the structure (Fig. 4, left) may be a layer 
group of OD layers. Which of them is realized 
depends on the modification of the maximal ERs. 
The two possibilities are indicated under ER 3 with 
layer group P(6)2rn of OD layers A 3 and under E R  4 

with layer group C 1 2 / m ( 1 )  of OD layers A 4, respec- 
tively. With ER3s, for any ring sheet one position 
more is possible relative to the last but one sheet of 
rings compared with E R  a . This is the position which 
coincides in projection with the last but one german- 
ate ring sheet. If this position is to be excluded, then 
E R  a is t o  be preferred. If this position is to be taken 
into account, then any of the maximal ERs contains 
only two sheets of three-membered rings as shown 
under 'maximal ER", i.e. V1 is present disregarding 
the Sr atoms which belong in this case to three ERs. 
Any of the Sr planes may constitute another kind of 
OD layer, but as they do not cause any disorder, they 
may be attached to the three-membered rings keeping 
their symmetry, i.e. the Sr half atoms may be attached 
to the respective neighbouring ring sheets. 

This example shows that it sometimes may be very 
difficult to determine the OD layers. But, as already 
mentioned, there is only a limited number of 
possibilities if starting from maximal ERs. The OD 
groupoid family will, in general, not be changed if 
sufficiently small parts of the structure are covered 
either twice or once by maximal ERs (compare with 
example 2). In this case there are regions of variable 
limits, meaning that the attachment of the atoms 
contained in these regions is left to the taste of the 
user. For V1 the OD groupoid family as well as the 
OD layers are uniquely determined. 

Application of the procedure for fully ordered 
structures results in V3 for them. Any part of such a 
structure is contained in an infinite number of ERs. 
Formally OD layers may be chosen perpendicular to 
each periodicity direction. The corresponding ERs 
contain two period lengths in such a direction. This 
shows fully ordered structures may be interpreted as 
OD structures but this is a formalism which does not 
make much sense. 
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Subfamilies 

If for a polytypic substance the OD family and thus 
the OD layers are determined, it may occur that the 
investigation of another sample of the substance 
yields new maximal ERs. In this case the ERs chosen 
do not meet all sites of possible disorder, and at least 
one kind of ERs have to be replaced by new maximal 
ERs defining new additional limits for OD layers. 
This leads to a splitting of the original OD layers. 
Obviously, the structures of the original family are 
contained in the new family. Any of the new maximal 
ERs fulfils the conditions for ERs also in the original 
family. 

I have to thank Dr sc. K. Fichtner for carefully 
reading thevmanuscript and also Dr K.-O. Backhaus 
and Dr S. Durovi~ for helpful discussions. 
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Abstract 

Anomalous scattering lengths of natural Sm for ther- 
mal neutrons with wavelengths between 0-827 and 
1.300A have been determined by single-crystal 
diffraction from a Sm complex of known structure. 
140 selected reflections were measured at a tem- 
perature of 37 K at each wavelength and bo + b' and 
b" refined in each case. The values obtained are in 
good agreement with values obtained from a Breit- 
Wigner calculation using tabulated absorption reso- 
nance parameters for 149Sm. A value of bo = 4.3 + 0.2 
fm is deduced from the diffraction experiments. 

* Research at Brookhaven National Laboratory performed under 
contract with the US Department of Energy, Otfice of Basic Energy 
Sciences. 

t Research collaborator at Brookhaven National Laboratory 
while on leave from the University of the Orange Free State, South 
Africa. 
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Introduction 

Anomalous scattering of thermal neutrons by res- 
onant nuclei has been exploited for crystal-structure 
determination - see, for example, Bartunik (1978), 
Flook, Freeman & Scudder (1977), Koetzle & Hamil- 
ton (1975), Schoenborn (1975), Sikka & Rajagopal 
(1975) and references cited therein. 

For successful application of phase determination 
techniques the anomalous scattering lengths must be 
known at all wavelengths employed in an experiment. 
We report here the determination of the scattering 
lengths of natural Sm at a number of wavelengths 
from measurements of reflections from a single crystal 
of known structure. The refined values are compared 
with values calculated from absorption resonance 
parameters. A preliminary report of this work has 
been published by Engel & Koetzle (1982). 

Table 1 gives a list of references to previous neutron 
diffraction determinations of scattering lengths of 
nuclei with large imaginary components. 
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